NOTES FOR CURSOR 10

May 1979
Ron Jeffries, Publisher

T —
mECODE
“Everything should be made ORKS
as simple as possible,

CURSOR

. . Programs for PET™ Computers i I Box 550
Glen Fisher, Editor not simpler.” Goleta, CA 93116
- Einstein 805-683-1585

A_CURSORY GLANCE

My impression is that Commodore has very bright guys in their engineering department, and that
they have designed a good system., However, I think that the problems of getting a produet as
complex as a floppy disk system fully ready for the consumer market have been seriously
underestimated. Many of the best technical people at Commodore are quite young, and do not
have the "seasoning" that comes from having your head bloodied by a product that was introduced
too soon. Another mejor problem with the disk system is that the manual doesn't give enough
information for either the new user or the experienced "hacker". I can only guess at what sort
of tricks advanced users will be able to make the disk perform, as the manual is frustratingly
devoid of technical details, All that I can report is that the little bit of information that is
given about the 2040 disk utility commands such as BLOCK EXECUTE, MEMORY WRITE, and
MEMORY EXECUTE are tantalizing clues about what may be under the covers. There is 4K bytes
of memory out in that system, with a full blown 6502, as well as a substantial set of stuff in the
disk ROM. Sounds like those pieces could be made to do some pretty fancy tricks when we get
enough information.

Evidently I was not the only person that was unhappy with the way that the Commodore Disk
Operating System treated the user. According to Commodore, a new function will soon be
available called "The Wedge". (The names comes from the fact that it prints a wedge ™" as its
prompt character). As I understand things, the wedge will be the first program on each diskette,
When you bring the system up "cold", you will do the following: LOAD "*",8, (In the Notes for
Cursor #9, I criticized the very awkward sequence of commands that are needed to look at the
directory of a newly inserted disk., At that time I wasn't aware of this shorthand method.) The
command "LOAD **",8 goes to the disk and brings into memory the first program on the disk., (I
wish that it brought in a program with a certain name, such as STARTUP...) So, if you have the
new "Wedge" program as the fisrt thing on your disk, you will be able to load it into memory
automatically, From what I know, the Wedge is a machine language program that will make many
of the DOS commands available from the keyboard, Most importantly, it will allow you to look at
the directory of a disk without destroying the program that is currently in memory.

My experience with the 2040 for a little over one month has been mixed. I'm not sure why, but
my disk has not performed as it should. One of my disks works quite well (although not
perfectly.) On that drive, I find that diskettes sometimes won't Minitialize" correctly, However,
once they start working, I have almost no trouble. But, if I take a disk from drive zero and put
it in drive one, I don't have very good luck. The most common thing that happens is that I
won't be able to read the disk at all on drive one. In my opinion, Commodore will probably solve
these problems, I know that they are trying to decide what to do about the fact that the 2040
runs hot, I just hope that those of us with early units will get an upgrade once they find the
problems.) The reason that I think that Commodore will solve the disk problems is very simple:
if they do not succeed in making the 2040 work reliably, they will not be able to stay in the
computer business, Since I assume that they plan to continue in the business, I also believe that
they will solve their problems. (Incidentally, since CURSOR is sold only to Pet owners, I have a
strong economic incentive to see Commodore do well.)

.

CURSOR 10 HAS THESE PROGRAMS: (Programs ending in *!' use CB2 sound.)

COVER! Another musical cover. Hook up your Pet for sound and enjoy!
TITRATE Practice titration by turning your Pet into a chemistry lab, By Garry Flynn,

FINANCE Calculate mortgages, pension plans, savings, ete. By T.M. Wagner

COURSE An interesting obstacle course, with varying degrees of difficulty. By Glen Fisher,
ASM A simple assembler for the 6502, By Glen Fisher.
READER This program turns machine code into DATA statements. By Glen Fisher.
Distributed in Japan by: Distributed in England by:
SYSTEMS FORMULATE Corp. AUDIOGENIC Ltd.
Shin-Makicho Bldg., 1-8-17 P.O. Box 88

Yaesu, Chuo-Ku, Tokyo 103 Reading, Berkshire

NOTES FOR CURSOR 10 Page 2 May 1979
_______________________———————M
MORE_ABOUT THE PROGRAMS

COVER... To appreciate this cover, you will need to have your Pet attached to a
small amplifier. (Actually, a big amplifier is even nicer, but it doesn't matter
very much.) CAP Electronics, 8462 Hillwood Ln. Tuscon, AZ 88715 sells a
modified radio and a demonstration tape for about $30. You plug their edge
connector into the back of your Pet, and you are all set for the style of sound
that CURSOR and several other vendors use. (It is called "CB2 Sound", as that
is the function of the 6522 that is used.) You can also use the Radio Shack
200mw Speaker/Amplifier, Catalog Number 277-1008. Channel Data, 4141
Hollisterv Ave Santa Barbara, CA 93111 sells the Radio Shack amplifier and the
appropriate edge connector for about $20. If you want to do a little work
yourself, you will need to get an edge connector, and solder two wires to the
connections to pin 12 (ground), and pin M (sound). See Notes for CURSOR 3 for
a diagram. However you do it, DO ITt If you have a Pet, and you don't have
sound, you are missing one of life's little pleasures.

TITRATE... This is a beautiful example of how an educational excercise can also
be a lot of fun. Garry Flynn wrote this simulation of the process of titration,
which is a common procedure in chemical analysis. Remember, you are trying to
get the solution to just turn color, which is shown as grey on the Pet. If you
go too far, it will turn white, which means that you went past the end-point, and
wasted the sample,

FINANCE... This is a program that will assist you in several routine calculations,
suech as compound interest, mortgage payments, pension plans, ete.

COURSE... You select the degree of dificulty that you want for the obstacle
course that the program builds for you. After the course is displayed, use the
number keys to move the cursor from the upper left corner to the lower right
corner in the minimum amount of time, Hint: don't forget that you can move
diagonally! The course is a bit tricky, but we assure you that there is always &
path that will take you to the finish.

ASM... Please see the article that begins on Page 3 of these Notes. Our
purpose in publishing this simple assembler is to make it possible for a large
number of people to experiment with 6502 machine language by using an
assembler. The CURSOR assembler has one design goal: get as much capability
into as little memory as possible, There are far better assemblers around, but in
one case, by the time you get the sssembler into an 8K Pet, you have almost no
room left for your code! Please don't think for a minute that we are suggesting
that you should quit using Basic. But in some cases, you will want to
experiment with the "guts” of your system, and to do that you'll have to face
machine code. Also, there are times when the extra overhead of the Basic
interpreter makes a function too slow to be useful.)

READER... After you have written and debugged your assembly language
program, what next? You probably want to use Basic as the easiest way to load
the code into the machine, So, first you assemble the code (quite likely into the
second cassette buffer that starts at 826 decimal). Next, you load in the
READER program, and run it, giving a starting and ending memory location,
READER will print DATA statements on your screen, which you can then enter
into the program by pressing [RETURN] on each line. If it won't all fit on one
screen, just keep repeating the process until you get it all entered in. Then, you
can delete the Reader program, and save your machine code as a Basic file,
This all sounds harder than it is! But believe me, if you have ever tried doing
the same thing the hard way by ecopying the stuff down by hand, you can
appreciate what a nice utility this is.

“There’s no sense being precise about something
when you don’t even know what your are talking about.”
- John von Neumann

NOTES FOR CURSOR #10 Fage 3 Maws 1979

I

THE CURSOR ASSEMBLER

A rrerequisite to using the a¢ mbler is a2 knowleddge of 6502 machine languadge. We don’t have room
to g0 into it nows but there are @ number of books available on the subdect. At the leasty uou
should have a corw of the MOS Technolody 6502 Frodramming Marnual.

Wiy a3n sssembler? For that matters what IS an assembler? As is our usual fashiony we shall
snswer the second euestion first. An assembler is 38 erogram that reads an sssembler erogram and
translates it to machine landusse,

(Before we take any more cuestionsy let us clarifw 3 confusing roint! the word “assembler’ can
refer to either the erogram to be transiated or to the rrogram doing the translating, This is
unfortunater but true. Henceforthy the rrodgram doing the tramslating will slwaws be ‘THE
assemhler’ or ‘AN assembler’y while the rrodgram being translated will Just be ‘assembler’. We now
return to the lecture already in Progress.)

Assembler erodrams are machine-languade rrodrams writtem in 8 waw that makes them halfwaw
comerehensihle to reorle. Reasal machine languadge is actually rure numbersy and is comrletelw
indecirherable excert to the comruter (and REALLY dedicated hackers). Assembler uses names for
all those things for which numbers don’t make sense to reorle. For examrler the number $Aly to
the 6502y means ‘losd a8 number into the accumulator’. To reorler it mesns nothing at sll. So the
assembler lets reorle write LIAY (LoaDl into Accumulator) insteads which is more easily
remembered., (A note! anwthingsy and ONLY those thingsy starting with a8 “$’ are hexadecimaly or
base—16sy numbers.) Another advantade of using names instead of numbers is that rrograms written
using names tend to have fewer errors in them than rrodgrams written using numbers orlws.

The 6502 computer has 56 different kinds of instructions» each coming in several stwles. To mateh
that varietyy the asssembler has 56 different namesy one rer instructions with stules enoudh to
matech all of the 65027s, We won’t waste seace by listing all the inmstructionsy but it is
warthwhile to look a3t the stules thew come in., The eprorer name for the stules that instructions
come in is ’addressing modes’. The 6502 has thirteen different addressing modes. The addressing
modes control Just how and where each instruction gets hold of the number it’s dgoing to rlaw with.
Things aren’t as bad as thew sound! no instruction uses a1l thirteen modess many use fewer than
foury and & number of instructions are restricted to one mode onlw. Along with the list of modess
we'll tell how it is indicated in the MOS Technolodgws asssembler (as that is how mank srodgrams are
rublished) and in our sssembler (85 that’s how wou’ll have to write it).

Mode Them Us
Imelied BRK BRK
Accumuslator LER A LSRA
Relative RCS NEMO BCS +NEMO
Immediate L.DA #10 LL.IIA# 10
Atsolute JER O QUIX JSR FQUIX
A-indexad

abhsolute STA FOOeX STAX FQO
Y-irudexed

ahsolute ADC ABCyY ADLCY ARC
Fade zero BRIT ZFG BIT. + ZFG
X-indexed

Fage Tero INC SPOTX INC.X G&FrOT
Y-indexed

rade Zero SRC FLUGH»Y SRC.Y PFPLUGH
Indirect JME (THERE) JMFR THERE
Fre-{(X-rindexed

indirect AN (MASK XD ANDEX MASK
Fost—-(Y-rindexed

indirect CHF (NUM)Y»Y CHFRY NUM

As 3 bonusy we threw in 38 samrling of imstructions. All those fumny sumbols under ‘Us’ will he
exrlained later. '

The 6502 can refer to ur to 655346 different spots in which it can remember numbers., The exact
number available derends on how much memorwy wour Fet has inm ity however., Each one of those srots
in memory has 38 number (called its ‘address’) which it can be referred to bw, For examrler the
first srot in the 2nd cassette buffer is srot number 826. Clearlus it is Just a3s annoving to have
to keer track of those numbers a8s it is to remember the mumbers for instructions. The assembler
rrovides thinds called ‘labels’ to a2id wou inm that. Whenever wou harren uron 2 srot wou want to
refer to lstery wou can tell the assembler the sroty znd what name wou’re dgoing to cell it., After
thaty wou use wour name for the sroty and the asssembler will rlug in the srorer number in =lace of
the neme. The samrle rrodgram below has seversl labele in ity which ought to helr clesr things ur.

How to use the sssembler

I this sssemblery as in mane sssemhlersy there are three classes of things gou can saw to it
instructionsy orerandss and directives. Instructions are Just the names of the 6502 instructions
(with 2 little extra tacked on the end). Orerands are the names of the slaces from uwhich the
instructions det the numbers thew rlaw with, Directives are commands to the assembler itselfs
which don’t det translated to machine landuage., For examrley the command to attach s neme to an
address is a8 directive.

Fade 4 Maw, 1979

NOTES

FOR CU

The addressing m of the instru

The instructions can be and ledal 6502 instr
characters are as follows (bl me:

indicated by 8 suffix of ane or two characters
(there is no suffix))i

bl ebsolute X absolutesX Y absolutesy
. padge Fero WX made Zeroyx Y radge zmerosT
P dindirect exX indirectsX @Y indirectsw
bl implied bl relstive

$# immediste A accumulator

The sssembler comes with & broad selection of orerands as wells

Orne bute orevandss

#10 decimal literal (means ‘literallsy 8 ten’)
$F2 hexadecimal literal ($F2 eauals 242 in decimal)
X character (8scii? literal (rerresents the ascii value of the character.

Thusy the orerand ‘R is the same 35 the number 82,

If the character is shifted or is 7+’ or "3 it should be in wuotes.)
PLINTH 8 padge Zero addressy or a named constant
+L.00F 3 relastive branch destination

Two bute orerands
SFOONLY absolute addressr or & named constant
;$594468 decimsl address or two-bute inteder
sHFFD2 herxadecimal address or two-bute inteder

£

The assembler 3lso has two directives: ‘@7 and =",

@826 tells the sssembler that anwthing assembled from the directive on down should be rut in
memory serots 826 on down. In other words» the assembler‘s ‘location counter’ is set to 826,
The location counter keers track of where the sssembled code is doing to be rut. It is also

used to rrovide a value for named constantsy 8s will be exrlained below.

@433 does the same thing as the other @ directives but takes a hexadecimal addressr instesd of
decimal .

=HERE tells the assembler that wou are dgoing to call the current memors srot “HERE’. The
assembler will save the current value of the location counter under the name ‘HERE’Zs and
1ook it up again whenever wou use ‘HERE’ somewhere else (like in & branch instruction).

The ‘= directive is also used to dive names to constants. OGiving names to constants has
the same value that giving names to everwthing else does! it makes thinsgs easier to
remember. Surrose wou’re writing 3 text editor (8 rorular rastime smong hackers)., For some
resson wou’ve decided to use 3 ‘14 to mesn move uF one limes and a ‘27 to mean move douWn .
Comrare the two rrodgram fragmentsy and decide which is more understandable?

@1
=UF (1 means UF one line)
a2
=[0WN (2 means DOWN 8 line)
cHF$ ¥1 CHMF$ JUF (did he sas UF?)
REQ +G0OUP BEQ +G0UP
CMF# ¥2 CHFE L LOWN {how about DOWNT)
REQ +GODOWN BER +GOROWN

Most reorle will mrefer the stuff to the rishts gsince it is more arparent what the intention
aof the code 1is. {(The comments arrly to either side.)

The assembler code should bhe tured into the assembler as DATA statementsy starting st line 11000.
Gerarate the instructionssy orerandsy and directives from each other with commas. (You could enter
them one rer liney but that gets rather wasteful of srace,) After wou’ve tured in 311 gour
srodramy sgve it (alond with the assembler). It would be a shame to have to reture all that code.
After the save 1is finisheds run the assembler, It will Frint a8 listing on the screen as it
assembles the srodram. (It does no good to route the listing to @ rrinters the cursor control
kews are used in its and thew dor’t srint vers well., The result would be a goodly amount of
serateh rarer.) The assembler reads wour ProAram twice: first to find out what all the labels arer
and adain to sroduce the machine code., While sour rrodram is beind read the first timer the
assembler will srint the labels as it finds thems to fet wou know what it’s doing, When dour
rrodgram is read the second timer the main listing is done. The listing shows 311 of wour FTOETamy
and what values are rut irto what memory locations. Below is @ rart of the listing from the
srodgram that comes Wwith the assembler:i

836 162 LOX#

837 0 _ $0 What Pet Owners Can Do

EEE =0QUTER A e tha o k oo

838 160 LIvE tl"e’:':iot_anltz:" :youare e key person responsible for con-
839 0 $0 ing your pet.

177 =INNERLH ARY Make a commitment to control your pet.

841 1 .PTR

g4z 201 CHF# KEEP YOUR PET LEASHED, FENCED OR CONFINED.
843 32 ’

844 240 BEQ

oA a +SKIF

NOTES FOR CURSOR #10 Fade 5 Mauws 1979

notes on can’t
i tells where the

The mumbers with a box around them rerresent reverse-video (the thing we do th
print that waw). The number to the left is the value of the Locstion counters
aumber to its risht was rut, The second number is the number sroduced bw the smhler in e
of the instruction or orerand to the far vight, If the location counter is reve e-video (b
an white) them nothing wss rroduced bw the sssembler for that lines it ordly made & note for i
about the lime. Lastr the instructiony orerandy or directive is listed. Its rosition on the line
is addusted in an effort to keer the listing somewhat readabler and is similar to the listing of
the rrodram below. When the mhler is domes it will saw ‘ASSEMBLY COMPLETE?s end stor. IF
there were 3Ny @rrorsy & mess . will have been printed beside the line in errory telling whzl
2rror Wwas. CIF wou get ‘BYTE T00 BIG’ on a branch instructiony the label wou’re bhranching
more than 128 butes awsws and can’t be reached from the branch. If wou dget ‘TOO MANY LARELS
increase the value of 8IZ on 1: 100D

t it. Refore wou dor SAVE

Whern at last the asssembler dives no error messadess wou are resds to tes
THE ASSEMBLER AND THE FROGRAM YOU WROTE! Assembler rrodgrams have 8 ni w habit ing the Fet
g0 off inte limbos where wou must turn the Pet off end on asasin to br it back. If that
haprensy and wou didn’t save wour rrodrams wou’ll have to twre it inm all over again. To run the
rrodrams use the 6YS command te make the Fet start rumming the machine languade srogram. If wour
erodram starts at location 826y ture

8YS 826

If wou’re luckwy wour srodram will rur the first time, Tf roty wou’ll have to debusg it,

ebudding rrodrams is 3 whole subdect unto itselfs and Wwill have to wait for another time. One
suddestiony however?! use the machine-lasnguade monitor. It isn’t rerfects tut is 3 hels in finding
where the program goes wronge esrecially with the new Fetss when it stsws around a1l the time.

The sssembler as it asrears in Cursor comes with the following eprodgram built ine. The srosiram
looks at the Fet’s screen and chasnges all non-blanks to reverse video (or backs if thew were
already reversed)., We list it here side-bg-side with the same thing written using MOS Technolodw
atuley hoth so wou can see how =rodrams are written using the sssemblery and for further hels in
reading MOS8 Technolodgw stule rrodrams.

MOS Technoloss Lis
032768
CRT EQU 32768 =CRT (rote where the screen buffer is)
@1
FTR EQU 1 =RTR (handy srot on rFadge Tero)
2480 (named constant here)
RIT? EQU $80 =RIT7 (high-order bit of a2 hute)
ORG B26 826 (put code into the 2nd cassette buffer)
LDA CRTADR LIvA sCRTADR (set PTR to start of CRT buffer)
8TA FTR SThA. TR
LA CRTADR+1 LA $CRTADRYY
5TA FTR+1 STA. JFTRYL
LOX #0 LDX# *Q (X counts cuarter—-screens)
QUTER LLDY #0O =0UTER LDY# ¥0 (Y counts characters)
INNER LDA (FTR)»Y =INNER LDARY «FPTR (get 8 char from the screen)
CMF #7 CMF# ’ (is it a blank?)
REQ BKIFP REQ +5KIF (if sos leave it alone.)
EOR ¥RIT7 EOR# +RIT7 (otherwisey reverse itl)
8TA (FTRYsY STARY FTR (angd rut it back)
SKIF INY =5KIF INY (onn to next char)
CRY #2550 CFY# 250 (end of cuarter—-screen?)
ENE INNER RNE +INNER (no ~ dgo flir next char)
cLc CLC (wes — advance to next cuarter-screen)
L FPTR LoA. +PTR (hwy addind 250 to stasrt rointer)
ARC #250 AlCE #2350
8Ta FTR STA. +FTR
oA PTR+1 Loa. +FPTR+1 (add carrg to high bute)
anc #0 ANCH *¥0
8TA FTR+1 STA. +FTR+1
INX INX
CFX #4 CFX#¥ #4 (finished last auarter?)
BNE QUTER ENE +0OUTER (if mots do next cuarter—-screern)
RTS RTS (all done - Ho0 suay)
CRYADR W CRT =CRYADR SCRT

You can bre out the srodram by running the sssembler after it has loaded. The assembler will
srint a2 listings as described sbovey and stor when it’s finished. (If wou det an errors wou must
have had 8 load errory as we carefullw exterminsted all the busgs bhefore we let it loose.) After
the assembler is doner twre ‘SYS 8267y and watch what harrens. You can re-run the srodgram 35 many
times s wou like.

The ohservant amond wou will have roticed that the srodgram doesn’t do the whole screen at onces it
carves it ue into auartersy and does one cuarter at 3 time. The reason is that the 6502 does all
its work in bute-sized chunks (no humor intended - nomest!Y, The lardest number that one bute can
hold is 255, Unfortunatelyy the screen is 1000 charscters longy which is clearls more than 205,
After some deer and abstruse caleculationsy we find that one-auarter of the screen is 200
characters longy and 250 WILL fit in one bute. Taking advantage of thats the rrogram has a small
inmer loor to reverse one euarter of the screens and an outer loos to count how mans
cuarter-secreens have been reversed. As sou can sees rrogramming in Easic does have its
advantagdes.

NOTES FOR CURSOR 10 Page 6 May, 1979

WHERE TO LEARN 6502 ASSEMBLER

There are several books on the market intended to teach 6502 machine language, of varying
quality. The better ones are rather biased towards the KIM, and away from the Pet, and so are
of limited usefulness. The books we have been able to see ourselves are:

2 by Caxton C. Foster - covers the subject fairly well, with
many different applications. However, those applications are mostly for the KIM. As a source of
information, rather than programs, it could be useful.

Programming the 6502 by Rodney Zaks - a rather thick book, 305 pages. That isn't as much as
you might think, as a quarter of the book is given over to a compendium of descriptions of the
instructions. On the whole, you would do better with something else (the MOS Technology manual
covers most of what's in here all by itself.)

The First Book of KIM by Butterfield, Ockers, and Rehnke - almost useless for the Pet, as it is
chock-full of many fascinating goodies for the KIM. Nearly all of those goodies will work only
on the KIM, however, and not the Pet, as the Pet and the KIM have different built-in software.

The MOS Technology_Programming Manual for the 6502 - While not the best, it is useful for the
Pet, as it makes very few assumptions about how you are running your programs, or where. Also,
since it is put out by MOS Technology, which makes the 6502, it can be considered to be the
final source of information, to which all others much conform. (Since they make it, they BETTER
know how it works!)

There are other books on 6502 machine language available. The ones mentioned above are just
the ones we have seen. If we sound somewhat harsh on them, it's that we have as high standards
for books as for programs. By the time you read this, Adam Osborne's 6502 book should be out.
We haven't seen it, but he has an excellent reputation in such matters. It is called 6502

i by Lance A. Leventhal, and can be bought from your friendly
local computer store. If you don't have a friendly local computer store, or are harboring a
grudge against it, you can write to:

Osborne MeGraw Hill Associates
630 Bancroft Way

Berkeley, California 94710

Those of you acquainted with other 6502 assemblers will have noticed that the CURSOR assembler
requires that the programmer type more than the usual 6502 assembler. The reason for that is to
keep the assembler small, so that larger programs may be assembled. Since the assembler can
know exactly what code to put out without having to know about other parts of the program, it
is simpler, and therefore smaller. For example, it can produce the proper number for a specific
instruction without having to decide what kind of operand is being dealt with. Similarly, it can
handle the operand correctly without having to remember which instruction the operand went with.
The extra typing is an inconvenience, true, Having used it as our production assembler for a
while, we have found that the inconvenience isn't as much as would be thought at first. Also,
since your program is part of the assembler (which is in Basie), you have the full power of the
Pet's screen editor available to correct your mistakes.

ABOUT PROGRAMS LARGER THAN SK

The mail is running about even on the issue of CURSOR publishing 16K programs (such as
GAMMON in CURSOR #9). Since some people feel strongly that we should NOT publish large
programs, we are going to proceed very carefully., One possibility will be that when we want to
publish a 16K program, that we will include it as a sixth program on the tape, so that our loyal
8K subscribers don't feel cheated.

